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Lecture 16: Shape from X

Initialize

‡ Spell check off

In[1]:=
Off@General::spell1D;

In[2]:=
SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,

Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

SetOptions@ListPlot, ImageSize Ø SmallD;
SetOptions@Plot, ImageSize Ø SmallD;
SetOptions@DensityPlot, ImageSize Ø Small, ColorFunction Ø GrayLevelD;
SetOptions@ListPlot3D, SphericalRegion -> True, Axes -> False,

Boxed Ø False, ImageSize Ø SmallD;
SetOptions@Plot3D, SphericalRegion -> True, Axes -> False,

Boxed Ø False, Mesh Ø False, ImageSize Ø SmallD;
nbinfo = NotebookInformation@EvaluationNotebook@DD;
dir =
H"FileName" ê. nbinfo ê. FrontEnd`FileName@d_List, nam_, ___D ß

ToFileName@dDL;

Outline

Last time

‡ Geometry,shape and depth: Representation issues & generative models

‡ Lambertian model

For a constant reflectance surface:

(1)L Hx, yL = EÔ ÿ NÔ Hx, yL



‡ Surface normal representations

Surface normal representation: Local, dense, metric, viewer-dependent coordinate system (e.g. slant from observer).

Today

‡ Inferring shape from X

Mathematica demos.
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‡ Focus on computation of local, view-dependent shape from shading

Perception of "Shape from X" 

How can we define shape more precisely?
One mathematical definition: "Geometrical properties that are invariant over translation and scale". 

A computational vision definition: "Whatever is left over after discounting material, illumination and viewpoint 
variations in the images of an object"

We will take a more general view here:

"geometrical relationships within a surface that are useful for visual functions". More precise definitions depend on 
the function.

Later we will return to the "discounting" issues.

We’ve seen that there is a variety of cues to shape. In natural images, these cues typically co-vary. Human vision can infer 
shape from any of them or in combination, hence "shape from X". 

Later on we will talk about cue integration. In a psychophysics lab, they can be manipulated independently. 

Last time we had an overview of cues to distance and to shape. 

Let's look more closely at several categories of shape cues, including some for the last lecture.

Texture
The term “texture” can be used in two different contexts. An object’s texture can be informative as to its material. But 
texture can also be informative as to an object’s shape. 

(Later on we will talk in more detail about how to model and infer surface material properties which may be characterized 
by texture patterns.) 

Texture by definition has a degree of  regularity represented by a pattern that gets repeated. Texture can be highly regular, 
or only regular in a statistical sense. Textures can be precisely defined in terms of symmetries. In particular, translational 
symmetry says that a pattern remains unchanged if shifted by a discrete amount.  For a stochastic or statistical texture, 
there is a statistic or collection of statistics (e.g. intensity variance, or local correlation) that is unchanged with spatial 
translation. Textures are sometimes described as spatially “homogeneous” with respect to some statistical measure. And 
sometimes the adjective “uniform” is added to make sure that one isn’t referring to texture that is deviating from homogene-
ity, i.e. becoming a spatial “flow”. 
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From: http://repository.cmu.edu/robotics/687, Deformable texture : the irregular-regular-irregular cycle. Yanxi Liu and 
Wen-Chieh Lin.

Suppose a surface has a deterministic regular homogeneous pattern of “texture elements”, where each texture element is 
the same 3D size, and they are distributed homogeneously. The general idea behind “shape from texture” is to assume that 
this underlying uniform texture that has gotten deformed by a change in the viewpoint relative to the surface patch being 
viewed. Let’s first look at the simplest case where we have a planar surface and we want to estimate the orientation of the 
surface relative to the viewpoint.  When we think about “shape”, a small planar surface can be considered a local approxi-
mation to a curved surface, and then shape from texture amounts to computing surface normal vectors over each patch.  
But the same texture cues can also be used to estimate the orientation of a large flat surface (such as a table top).

‡ Texture and slant/tilt

Define a function to place circular disks on a regular grid

checker[x_,y_,space_,radius_]:= If[(Mod[x,space]^2+Mod[y,space]^2<radius^2) || (Mod[-x,space]^2+Mod[-y,space]^2<radius^2) || (Mod[x,space]^2+Mod[-y,space]^2<radius^2) || (Mod[-x,space]^2+Mod[y,space]^2<radius^2),0,1];
pic = Table[{checker[x, y, 32, 12]}, {x, 1, 512}, {y, 1, 512}];

ListPlot3D@Table@1, 8x, -5, 5, .1<, 8y, -5, 5, .1<D, Mesh Ø None,
VertexColors Ø 8pic@@5 ;; -5 ;; 5, 5 ;; -5 ;; 5DD<, Lighting Ø "Neutral"D

How important is the contour information? Judge the local orientation through an aperture (use a straw 
or a rolled-up piece of paper)
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How important is the contour information? Judge the local orientation through an aperture (use a straw 
or a rolled-up piece of paper)

The generative assumptions above lead to regularities in the image that can be used to estimate surface slant--if the spatial 
scale of the texture is small in comparison to the surface curvature,  so that the surface can be approximated locally by a 
plane. 

Then, cues to surface slant: 

1) spatial gradient of the density of texture elements (“tokens”): the image token density increases with distance; 

2) an individual element (such as a circular disk) gets smaller with distance, and its image height to width ratio 
gets smaller ("compressed") with increasing slant;

3) the ratio of the back width to the front width of  an individual element gets smaller with slant  (imagine a small 
square, linear pespective on small scale) . 

(See Knill). 

Tilt is the direction that the surface slants away most rapidly. Here the density and sizes of the elements change the most 
rapidly.

‡ Texture and shape

Plot3DBSin@0 + Sin@y ê 2DD, 8x, -8, 8<, 8y, -8, 8<,

PlotStyle Ø TextureB F, BoxRatios Ø 81, 1, 0.08<,

Lighting -> "Neutral"F

Try mapping an inhomogeneous pattern. In this demo, you can experience the perceptual tension between different 
sources of shape information. There are texture changes due to the 3D surface onto which the Mandrill has gotten mapped, 
texture and material changes due to the original actual shape of the Mandrill’s head. And as you rotate, you experience 
motion flow cues from the 3D surface.
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Try mapping an inhomogeneous pattern. In this demo, you can experience the perceptual tension between different 
sources of shape information. There are texture changes due to the 3D surface onto which the Mandrill has gotten mapped, 
texture and material changes due to the original actual shape of the Mandrill’s head. And as you rotate, you experience 
motion flow cues from the 3D surface.

pic = Reverse@ExampleData@8"TestImage", "Mandrill"<, "Data"D ê 255.D;
Plot3D@Sin@x + Sin@y ê 2DD, 8x, -8, 8<, 8y, -8, 8<, PlotStyle Ø Texture@picD,
BoxRatios Ø 81, 1, 0.08<, Lighting -> "Neutral"D

Shape and texture: Adapt the above function to map a texture onto a smooth shape

Project idea: Map a small single textural element (e.g. a disk) onto an "invisible" bump. Allow the user 
to move the element around. Does your perceptual system infer the underyling shape?

Stereo disparity

‡ Random dot stereograms

A simple planar surface in depth.
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http://demonstrations.wolfram.com/FloatingDiskStereogram/

Cross your eyes so that you see three dots (rather than two) at the bottom. The above surface should appear like the one 
below, but viewed from above.

But smooth shape can also be conveyed through disparity -- “shape from stereo”. 

‡ Random dot stereograms, "Magic eye" style 

H*Copyright HcL Dror Bar-Natan 1994*L
H*Random Dot Stereograms in The Mathematica Journal 1-

3 H1991L 69-75L.*L

f@x_, y_D := Sin@20 Hx^2 + y^2LDêH1 + 5 Hx^2 + y^2LL
H*the function drawn*L

Show@
Graphics@Table@H*loop 500 times*L

x = Random@Real, 8-1, -0.6<D;
H*generate a random number between-1 and-0.6*L
y = Random@Real, 8-1, 1<D;
H*generate a random number between-1 and 1*L
Table@H*loop 6 times*Lx0 = x; x = x + 0.4 + f@x, yDê15;
H*compute coordinates of next pixel*LPoint@8x0, y<D,
H*put a point*L86<D, H*end inner loop*L

8500<DDD
H*end outer loop*L
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Here's one at a higher dot density:

See: Christopher Tyler. The wiki page provides nice summary: http://en.wikipedia.org/wiki/Autostereogram.

Project idea: Does human vision show orientation-selective adaptation to stereoscopically defined shape?

‡ Stereo + shading + surface contours

In general, there are multiple cues to shape. 

In[59]:=
pL=Plot3D[Cos[Sqrt[x^2+y^2]], {x,-10,10}, {y, -10, 10},

AspectRatio -> Automatic, PlotPoints-> {25,25}, ViewPointØ{1.3,-2.4,2.}];
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In[60]:=
Manipulate@
pR = Plot3D@Cos@Sqrt@x^2 + y^2DD, 8x, -10, 10<, 8y, -10, 10<,

AspectRatio Ø Automatic, PlotPoints Ø 825, 25<,
ViewPoint Ø 8vp, -2.4, 2.<D;

Show@GraphicsRow@8pL, pR<DD, 88vp, .8<, 0.8, 1.5<D

Out[60]=

vp

Motion
We'll look at structure & shape from motion in detail later. With some care, one can put up an animation in which any 
single frame shows no apparent structure, but when moving, the shape becomes clear. E.g. rotating "glass" cylinder with 
dots on it. Or, "biological motion".

random.mov

cube.mov

16.ShapeFromX.nb 9



Contours

‡ Surface contour (markings)

Plot[{Sin[x],Sin[x]+1,Sin[x]+2, Sin[x]+3, Sin[x]+4, Sin[x]+5},{x,0,10}, Axes->False,ImageSize->Small]

‡ Shape from moving contours

Here's an example taken from the Mathematica documentation. Apparent 3D shape emerges only with movement.

nsize = 128;
subnsize = 32;
noise = Table@RandomReal@D, 8nsize<, 8nsize<D;
subnoise = Table@RandomReal@D, 8subnsize<, 8subnsize<D;
gn = ArrayPlot@noise, PlotRangeÆ 80, 1<, PixelConstrainedÆ 81, 1<D;
gsn = ArrayPlot@subnoise, PlotRangeÆ 80, 1<, PixelConstrainedÆ 81, 1<D;

In the demonstration below, use the computer mouse to drag the point where the lines converge.
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Manipulate@
Graphics@8Line@Table@88Cos@tD, Sin@tD<, pt<, 8t, 2. Pi ê n, 2. Pi, 2. Pi ê n<DD<,
PlotRangeÆ 1, ImageSizeÆ SmallD, 88n, 30<, 1, 200, 1<,

88pt, 80, 0<<, Locator<D

n

‡ Surface contours (creases or orientation discontinuities)

The lines mark surface orientation discontinuities.

<< PolyhedronOperations`
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Graphics3D@8Yellow, Opacity@.0D,
PolyhedronData@"GreatDodecahedron", "Faces"D<, Boxed Ø False,

ImageSize Ø SmallD

‡ Bounding contours, (depth discontinuities), e.g. silhouette 

Orientation discontinuities can coincide with depth discontinuities.

Graphics3D@
8Black, Opacity@1D, PolyhedronData@"GreatDodecahedron", "Faces"D<,
Boxed Ø False, Lighting Ø 88"Ambient", Orange<<, ImageSize Ø SmallD

‡  ...and smooth occluding contours

In this smooth shape, orientation of a unit normal vector changes smoothly at the depth discontinuities of the boundary.
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SphericalPlot3D@1 + 2 Cos@2 qD, 8q, 0, Pi<, 8f, 0, 2 Pi<, Lighting Ø None,
Boxed Ø False, Axes Ø False, AspectRatio Ø 1, ImageSize Ø SmallD

For a concrete example of computating shape,  let’s focus on the problem of shape 
from shading...

Computing shape from shading

Introduction
The ambiguity of shading has had a newsworthy impact for well over a century, beginning with the "canals of Mars".  
Beginning in 1877,  these "canals" attracted world-wide attention when the Italian astronomer, Giovanni Virginio Schiapar-
elli reported about  a hundred of them. The American astronomer Percival Lowell  thought the markings  were  vegetation, 
several kilometres wide, bordering irrigation canals dug by intelligent life to carry water from the poles. However, most 
astronomers couldn't see the canals. Photography through the Earth's atmosphere offered no solution because the lines 
were near the limit of resolution of the human eye and the physical optics of the time. The controversy was firmly settled 
in 1969 when photographs were taken from several hundred kilometres above the surface of Mars by the Mariner 6 and 7 
spacecraft. These showed many craters and other formations but no canals.

However, the phenomenon of seeing intriguing shapes from shading hadn't gone away even in the late 20th century. With 
the Viking orbiter of 1976,  NASA photographs produced a number of interesting pictures from Mars:
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Are these shapes we see really there? If not, why do we see the particular shapes that we do?

The  ambiguities
Shape from shading is fascinating from a computational perspective--there is considerable local ambiguity, yet human 
vision is so sure of what it sees. To appreciate vision's solution, let's take a closer look at the ambiguities.

The following figure from William Freeman at MIT illustrates the light-direction/shape ambiguity problem of shape from 
shading:

Classic regularization approach to shape from shading (Ikeuchi and Horn, 1981)
See chapter 4 in Horn's book "Robot Vision": http://people.csail.mit.edu/bkph/articles/Shape_from_Shading.pdf

Shape from shading can be treated as an inverse problem. Earlier in the course, we saw that inverse problems can be 
formalized in terms of Bayesian estimation. Recall that for scene-from-image problems, we start off with the generative 
model, and then seek an inverse solution.

Let's look at a classical solution to shape from shading due to Ikeuchi and Horn. Although it was not originally formulated 
as a Bayesian inference problem, it is essentially equivalent to MAP estimation.
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Write down the Lambertian generative model for image luminance L in terms of geometrical gradient space parameters p, 
q:

where r is the reflectance, and e the strength of illumination. N and E are unit vectors, as in the last lecture. E is a point 
light source (we'll assume e=1), and E and N’s directions can be expressed in gradient space:

Taking the dot product, we have:

Our data is L(x,y).  We require that our model satisfy the data, i.e. that L(x,y) = LR(p,q). One problem is that we do not 
know the reflectance r or the light source direction (pe, qe). (Note that in general, r is not going to be a constant, but rather 
some pattern of pigmentation, r(x,y)). To keep it simple, we assume r and  (pe, qe) are known and fixed constants. But we 
still have many p's and q's which will satisfy L - LR=0, in fact two unknowns for every equation. This makes clear that 
shape from shading is under-constrained or "ill-posed" mathematical problem.

Just in case you are thinking that we might be able to use regions of constant intensity, note that lines of constant lumi-
nance in the image (called isophotes) do not necessarily imply constant (p,q):

A solution to ambiguity (that we'll explore in detail later in optic flow motion field estimation) is to impose 1) a region-
based smoothness                   constraint (a local constraint) and 2) boundary                conditions (global constraint). Smoothness constraints 
can be formulated as "Bayesian priors", but more on this later. Let's see how Ikeuchi and Horn got around the problem of 
ill-posedness.

Implementing a smoothness constraint. 

The intuition is that many objects tend to be smooth. What does this mean in terms of how surface normals change across 
a surface? We would expect smooth surfaces to have small spatial deriviatives. If we made a guess as to what the surface 
normals were, we could measure the degree of smoothness using first or second derivative magnitudes, and if too big, try 
to change the shape to make the surface smoother. The idea is to write an algorithm that searches for a surface that satis-
fies  L - LR=0 AND has low spatial derivatives. 

Let us follow the approach of Ikeuchi and Horn (1981), and enforce a surface smoothness assumption (or constraint) by  
requiring that the squared values of the Laplacians of p and q be small. The Laplacians are:
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We then  construct a local cost function function:

We want e(x,y) to be small. This will be the case if (p,q) is chosen so that the first term tends toward zero, and if the 
spatial derivatives are small (i.e. because we've chosen p,q to change slowly). But we want this local cost function to be 
small over the whole image.

So we construct a global cost "functional" by integrating over the whole image:

The goal is to find (p,q) at each point (x,y) which makes the global error or cost, e[p,q] as small as small as possible. λ is a 
weighting function on the smoothness. For example, it  should be big if we have reason to believe our data are noisy--i.e. 
we want to trust our prior smoothness constraint over the unreliable data. 

The boundary values can also be used to constrain the solution, and may be necessary at times to produce a unique solu-
tion. They are also important to prevent smoothing over discontinuities.  What are the boundary conditions?

The surface normal can be read directly off the image if the boundary contours are known. But we have a problem, at 
smooth occluding bounding contours,  po and qo  (the spatial rates of change of the surface depth away from the view-
point) are infinite. And if the bounding contours are not smooth, but sharp, the surface normal is not defined there.

One solution is to change coordinates to ones that don't blow up at boundaries. Stereographic coordinates are one solution 
to avoiding infinities at the boundaries (Ikeuchi and Horn, 1982).
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Another representation that will avoid the boundary problem is slant and tilt introduced earlier (e.g, Mamassian and 
Kersten (1995)).

It can be shown that minimizing the above error function is equivalent to maximizing the posterior probability of the map 
of surface p(x)'s and q(x)'s conditional on L(x,y). Using Bayes, the generative model determines the likelihood, and the 
laplacians of the gradient parameters determine the smoothness prior.

Human perception of shape from shading

Perception of shape from shading & lighting direction
Some studies seem to indicate that human observers are not very accurate at estimating the local orientation of surface 
normals. It has also been shown that human visual judgments show a bias towards the fronto-parallel plane. 

We also seem to have difficulty in estimating the slant of a light source (Todd, J. T., & Mingolla, E., 1983; Mingolla, E., 
& Todd, J. T. 1986). We are better at the tilt.

One problem with our above shape from shading analysis is that we assumed light source direction is known. 

Human observers do assume that the light source is from above. This can be seen in the age-old "crater illusion" in which 
we have vertical luminance gradients of intensity giving an impression of a convex object on the left, and a concavity on 
the right (Ramachandran, V. S., 1988). (See previous lecture and code below that makes a bump lit from above and one 
that is upside-down). However, the light from above prior is relatively weak, which can be seen when vision is given a 
richer shape structure (Morgenstern, Y., Murray, R. F., & Harris, L. R. (2011). 

Interestingly, there also seems to be a slight bias towards assuming the light source is coming from the left (Sun & Perona, 
1998).

Shading and contour interaction
A challenging problem is understanding how shape-from-contour interacts with shape from shading. Contour can override 
shading information. Let's cut out sections of part of an apparent sphere:

s={-10,100,10}; s=N[s/Sqrt[s.s]];
temp=Transpose[Table[normface[x,y].s,{x,-1.2,1.2,0.01},{y,-1.2,1.2,0.01}]];
b1=ArrayPlot[temp,MeshØFalse,FrameØFalse, PlotRangeØ{-1,1}];

s={-10,100,10}; s=N[s/Sqrt[s.s]];
temp=Transpose[Table[If[(x<-1/4 || y<-1/4) || (x>3/5 || y>3/5),0,normface[x,y].s],{x,-1.2,1.2,0.05},{y,-1.2,1.2,0.05}]];
b2=ArrayPlot[temp,MeshØFalse,FrameØFalse, PlotRangeØ{-1,1}];
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s={-10,100,10}; s=N[s/Sqrt[s.s]];
temp=Transpose[Table[If[Abs[x]+Abs[y]>.5,0,normface[x,y].s],{x,-1.2,1.2,0.02},{y,-1.2,1.2,0.02}]];
b3=ArrayPlot[temp,MeshØFalse,FrameØFalse, PlotRangeØ{-1,1}];

The same patch taken from the image of the sphere can appear as an apparent cylinder, or diamond depending on the 
bounding contours:

GraphicsRow@8b1, b2, b3<D

How the visual system incorporates boundary conditions is still not well-understood. This could be done either through 
low-level "propagation" analogous to the Ikeuchi & Horn algorithm, or it could be done by using the contour to "index"  
shape classes (polyhedra, cylinders, spheres, pills, chiclets, etc..) with which to infer the interior shape.

Demo idea

Another demo (due to David Knill) you can try to make yourself is generate a vertical sine-wave grating.  Make the 
contours at the top and botoom have either 1) the same frequency as the grating or 2) twice the frequency.

One research problem is how do specularities affect the convex vs. concave perception in the above figures? It has been 
found that human observers can use the stereoscopic position of a specularity (which is in front of a concave surface, and 
behind a convex surface) to disambiguate the shape (Blake and Bülthoff, 1990; 1991).

Project idea
Here is a project idea. One would expect that the influence of contour on shape-from-shading would depend on whether 
the contour is "attached" to the shaded region or not. A simple way of manipulating this is to use stereo. For example, one 
could  make the boundary of a sphere to appear either at the correct boundary (i.e. towards the back of the bulge), or in 
front of the bulge, as if it is a hole. Perceived shape should be affected. One might even be able to design a shading pattern 
that looks very different depending on what the boundary gets attached to. For a discussion of "intrinsic" vs. "extrinsic" 
contours, see: Nakayama, K., & Shimojo, S. (1992).
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Suppose that the diamond boundary below appeared as a diamond-shaped whole. Would one still interpret the shading as a 
pill, or would the shape of the internal region now appear more spherical?

Psychophysics
There have been a number of studies of the kinds of psychophysical errors made in slant and tilt judgements with a shape-
from-shading algorithm that assumes smoothness in slant and tilt and knows the boundary values (e.g. Mamassian and 
Kersten. 1995). Mamassian and Kersten investigated the perception of local surface orientation for a simple object with 
regions of elliptic (egg-shaped) and hyperbolic (saddle-shaped) points.  The local surface orientation was measured by the 
slant and tilt of the tangent plane at different points of the surface under several different illumination conditions.  They 
found an underestimation of the perceived slant, and a larger variance for the perceived tilt.  They also found that subjects 
were better at estimating the surface orientation when the shape was locally egg-shaped rather than saddle-shaped or 
cylindrical.  From converging evidence based on (i) the light direction most consistent with the observer's settings, (ii) a 
supplementary experiment where the object is displayed as a silhouette, and (iii) the computer simulations of the shape 
from shading algorithm, they concluded that the occluding contour was the dominant source of information used by the 
observers.

At this point, very little is known about the neurophysiology of shape from shading/contour, although there has been 
speculation about the role of V1 spatial filters (e.g. simple cells) in the local estimate of shape;  see some early ideas by 
Lehky and Sejnowski (1988),  and by Pentland (1982). Knill and Kersten showed that orthogonal oriented linear filters 
could be used to estimate surface normals for Lambertian surfaces; however, we have very little idea of how neural 
systems may represent parameters of shape. Even basic issues such as viewpoint dependent (via extrinsic geometry) vs. 
viewpoint dependent (via intrinsic geometry) representations are unclear.

Neuroimaging
There have been a number of studies of the neural basis of human object and shape perception using fMRI. For example, 
see: Kourtzi and Kanwisher (2000) and Moore and Engel, 2001). See also Mamassian et al. (2003). 
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Next time

Bayes formulation of shape from shading & bas-relief
Task-dependency

‡ How to pick? Shape from X1 or  X2 or  X3

How should a visual system decide what kind of shape cue it has (shading from lambertian material, shading from shiny 
material, shading due to texture), and thus what kind of algorithm to use? One approach is to run a set of experts in parallel 
and pick the solution from the one that seems to "know what it is doing". Another approach is to use robust algorithms that 
are not sensitive to the details of the cues.

‡ How to integrate? Shape from X1 and X2 and X3

Later in the course, we will look at the problem of cue integration for depth and shape.
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Introduction to motion analysis

Appendices

Mathematica demonstration of: Illumination direction & shape ambiguity using the 
lambertian model

‡ Lambertian hemisphere

bump@x_, y_D := If@x^2 + y^2 > 1, 0, Sqrt@1 - x^2 - y^2DD;
g1 = Plot3D@bump@x, yD, 8x, -3, 3<, 8y, -3, 3<, PlotPoints Ø 64,

PlotRange Ø 80, 2<, Mesh Ø False,
Lighting Ø 88"Directional", RGBColor@1, 1, 1D, 885, 5, 4<, 85, 5, 0<<<<,
ViewPoint Ø 81, 2, 1<, AxesLabel Ø 8"x", "y", "z"<, Ticks Ø False,
AspectRatio Ø 1, ImageSize Ø Small, Boxed Ø False, Axes Ø FalseD
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‡ Calculate surface normals of  surface

Clear@nx, nyD; little = 0.001; big = 1000;

nx@x_, y_D := Evaluate@D@bump@x, yD, xDD;
ny@x_, y_D := Evaluate@D@bump@x, yD, yDD;
nx@x_, y_D := big ê; x^2 + y^2 == 1
ny@x_, y_D := big ê; x^2 + y^2 == 1
nx@x_, y_D := 0. ê; 8x^2 + y^2 > 1<
ny@x_, y_D := 0. ê; x^2 + y^2 > 1

nx[x,y] is  ¶∂z
¶∂x

, and similarly for ny. The rate of change of depth range is greatest as the face slopes away from the 

viewpoint:

‡ Lambertian rendering: specification for normals, light, reflectance 

‡ Unit surface normals

Normalize the surface normal vectors to unit length:

normface@x_, y_D := -8nx@x, yD, ny@x, yD, 1< ê

HSqrt@nx@x, yD^2 + ny@x, yD^2 + 1DL;
VectorPlot@8normface@x, yD@@1DD, normface@x, yD@@2DD<, 8x, -1.2, 1.2<,
8y, -1.2, 1.2<, ImageSize Ø SmallD

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

‡ Render  bump surface

Use the lambertian equation to render the surface illuminated from above and from below.
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a@x_, y_D := 1;
s = 8-10, 100, 10<; s = N@s ê Sqrt@s.sDD;
b1 = DensityPlot@a@x, yD * normface@x, yD.s, 8x, -1.2, 1.2<,

8y, -1.2, 1.2<, Mesh Ø False, PlotPoints Ø 64, Frame Ø False,
PlotRange Ø 8-1, 1<, ColorFunction Ø "GrayTones"D;

s = 8-10, -100, 10<; s = N@s ê Sqrt@s.sDD;
b2 = DensityPlot@a@x, yD * normface@x, yD.s, 8x, -1.2, 1.2<,

8y, -1.2, 1.2<, Mesh Ø False, PlotPoints Ø 64, Frame Ø False,
PlotRange Ø 8-1, 1<, ColorFunction Ø "GrayTones"D;

GraphicsRow[{b1,b2}]

Linear approximation

‡ Linear approximation to the Lambertian generative model for shading

The image formation constraint that we have used is non-linear. It is worth asking to what degree a linear approximation 
would be adequate-- a question which has been addressed  by Knill and Kersten (1990) and by Pentland (1990). If a linear 
approximation works, then the inverse problem is linear. 

Let's derive a linear approximation to:

Lmodel[pn_,qn_,pe_,qe_]:= ({pn,qn,-1}/Sqrt[pn^2+qn^2 + 1]).({pe,qe,-1}/Sqrt[pe^2+qe^2 + 1]);

16.ShapeFromX.nb 23



where we use the notation p->pn, q->qn.

Taylor's series

We can expand the image luminance in a Taylor series about {pn,qn}={0,0}. Recall that this is done by calculating 
successive derivatives at {pn,qn}={0,0}, and then substituting {pn,qn}->{0,0}. The first derivative with respect to pn is:

D[Lmodel[pn,qn,pe,qe],pn]/.{pn->0,qn->0}

1

3

Note that this is the cosine of the slant of the light source (see previous lecture).

Mathematica's Series[] function puts the Taylor series together for us. Here is the expansion up to linear terms:

Series[Lmodel[pn,qn,pe,qe], {pn, 0, 1}, {qn, 0, 1}]

1

3
+

qn

3
+ O@qnD2 +

1

3
+ O@qnD2 pn + O@pnD2

You can improve the approximation by including quadratic terms: Series[Lmodel[pn,qn,pe,qe], {pn, 0, 2}, {qn, 0, 2}].

Try it out on bump[x_,y_]:=(1/4) (1-1/(1+Exp[-10 (Sqrt[x^2+y^2]-1)])); 

Clear[bump,x,y];
bump[x_,y_]:=(1/4) (1-1/(1+Exp[-10 (Sqrt[x^2+y^2]-1)]));
pn[x_,y_]:= Evaluate[D[bump[x,y],y]];
qn[x_,y_]:= Evaluate[D[bump[x,y],x]];
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Plot3D@bump@x, yD, 8x, -3, 3<, 8y, -3, 3<, Mesh Ø False,
PlotRange Ø 80, .5<, ImageSize Ø Small, Axes Ø False, Boxed Ø FalseD

Light source:

{pe,qe}={1,1};

Lapprox@x_, y_D :=
1

1 + pe2 + qe2
+

qe * qn@x, yD

1 + pe2 + qe2
+

pe * pn@x, yD

1 + pe2 + qe2
;

Lapprxom[x_,y_] := (1+qe*qn[x,y] + pe*pn[x,y])/Sqrt[1+pe^2 + qe^2];
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DensityPlot@Lapprxom@x, yD, 8x, -3, 3<, 8y, -3, 3<, Mesh Ø False,
Frame Ø False, PlotPoints Ø 64, PlotRange Ø 80, 1<,
ColorFunction Ø "GrayTones", ImageSize Ø SmallD

How could you use the above linear generative model for "shading from shape" to devise a solution to 
the inverse problem of "shape from shading"?

In the next lecture, we'll look at a simple algorithm for shape from shading that assumes the linear generative model.

‡ Is shape from shading really ill-posed? Formal (exact) solution to the classic problem: lambertian, 

point light source
Given a Lambertian reflectance, and a point light from the camera, the shape from shading problem is well-posed and a 
solution can be found (Dupuis and Oliensis, 1994).  

‡ Shape from shading on a "cloudy day"--diffuse lighting

Most theoretical work on shape from shading  started assuming point light sources, but diffuse lighting is the more realis-
tic case. The generative physical problem becomes complicated.  Ray-tracing and radiosity methods provide forward 
generative models (eg. Greenberg, 1989; Foley et al., 1990). But the straightfoward inverse problem is impractical--can't 
check out all the ray-tracing bounces!

For an elegant solution to the problem of shape-from-shading on a cloudy day, see: Langer, M. S. & Zucker, S. W. (1994)
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